Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shun Wang, Hu Mao-Lin* and Fan Chen

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hml64@sohu.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.125$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[aquazinc(II)]- μ-2,2'-dithiodibenzoato] bis(N, N-dimethylformamide)]

In the title compound, $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right\}_{n}$, the $2,2^{\prime}$-dithiodibenzenecarboxylate anion, which acts as a bridge, is tetradentate to water-coordinated zinc(II) ions, forming a polymeric double-chain ribbon. The geometry around the $\operatorname{zinc}(\mathrm{II})$ ion is that of a square pyramid. The coordinated water molecules and uncoordinated N, N-dimethylformamide molecules are linked by hydrogen bonds.

Comment

The $2,2^{\prime}$-dithiodibenzenecarboxylate (dtbc) anion binds to metal atoms in a variety of bonding modes, and two of its complexes have been structurally characterized (Ganesh et al., 1990; Toby et al., 1981). These studies have been extended to the present polymeric zinc complex, (I), in which each dtbc anion functions as a bridge linking four zinc ions.

(1)

In (I), each zinc ion is coordinated by four O atoms from four carboxylate groups of four dtbc anions, with a typical $\mathrm{Zn}-\mathrm{O}$ (carboxylate) distance range $[2.041$ (3)-2.056 (3) \AA; Chen et al., 1994] and one water molecule, with a shorter $\mathrm{Zn}-$ O distance $[1.964$ (3) \AA] , resulting in a slightly distorted square-pyramidal coordination polyhedron (Table 1 and Fig. 1). The square plane containing atoms $\mathrm{O} 3, \mathrm{O} 2^{\mathrm{i}}, \mathrm{O} 4^{i \mathrm{ii}}$ and $\mathrm{O} 1^{\text {iii }}$ [symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x,-y+2$, $-z$; (iii) $x-1, y, z$; mean deviation $0.0028 \AA$] is slightly distorted. Four carboxylate groups bridge two zinc ions, forming centrosymmetric binuclear units with $\mathrm{Zn} \cdots \mathrm{Zn}$ separations of 2.9978 (8) A, and a dihedral angle of $76.5(1)^{\circ}$ between the planes through the two aromatic rings. The dtbc anions link the binuclear units, generating a polymeric doublechain ribbon (Fig. 2). The N, N-dimethylformamide molecules are involved in hydrogen-bonding interactions with the coordinated water molecule (Table 2).

Experimental

A solution (10 ml) of ethanol containing $2,2^{\prime}$-dithiodibenzoic acid $(0.33 \mathrm{mmol}, 0.10 \mathrm{~g})$ was added slowly to a dimethylformamide solu-
tion $(10 \mathrm{ml})$ of zinc dimethyldithiocarbamate $(0.5 \mathrm{mmol}, 0.04 \mathrm{~g})$. The mixture was stirred for a few minutes and left to stand at room temperature for a week, affording colorless block-shaped crystals.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$D_{x}=1.519 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=533.90$
Monoclinic, $P 2_{1} / c$
$a=11.0956$ (4) A
$b=17.2715$ (7) \AA
$c=12.2400(5) \AA$
$\beta=95.695$ (2) ${ }^{\circ}$
$V=2334.07(16) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.592, T_{\text {max }}=0.883$
12296 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 2880
reflections
$\theta=2.4-26.6^{\circ}$
$\mu=1.27 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.46 \times 0.18 \times 0.10 \mathrm{~mm}$

4193 independent reflections
3417 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-13 \rightarrow 12$
$k=-20 \rightarrow 20$
$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.125$
$S=1.08$
4193 reflections
299 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0625 P)^{2}\right.} \\
&+1.0746 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 7$	$1.960(3)$	$\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{ii}}$	$2.044(3)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.041(3)$	$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{iii}}$	$2.056(3)$
$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.042(2)$	$\mathrm{Zn} 1 \cdots \mathrm{Zn}^{1 i}$	$2.9979(8)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 3$	$101.68(12)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{iii}}$	$87.27(12)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$103.34(12)$	$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{iii}}$	$98.11(12)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$89.36(12)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{iii}}$	$87.44(12)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{ii}}$	$100.13(13)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{iii}}$	$158.51(11)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{ii}}$	$158.12(11)$	$\mathrm{O}^{4 i}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{iii}}$	$87.83(12)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 2-\mathrm{C} 8$	$-96.55(18)$		

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $-x, 2-y,-z$; (iii) $x-1, y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 5^{\mathrm{iv}}$	0.840 (19)	1.79 (2)	2.613 (5)	166 (5)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O}^{\text {6iii }}$	0.841 (19)	1.78 (2)	2.619 (4)	172 (5)
C2-H2 . S 2	0.93	2.74	3.220 (4)	113
C5-H5 . O-O1	0.93	2.51	2.796 (5)	98
C9-H9...S1	0.93	2.75	3.216 (4)	112
C12-H12 . O 4	0.93	2.50	2.788 (5)	98
C15-H15A \cdots O5	0.96	2.48	2.820 (11)	101
C19-H19A . . O6	0.96	2.35	2.761 (8)	105

Symmetry codes: (iii) $x-1, y, z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Water H atoms were refined $[\mathrm{O}-\mathrm{H}=0.840$ (19) and 0.841 (19) \AA] . All other H atoms were positioned geometrically and allowed to ride on their parent atoms at $\mathrm{Csp}{ }^{2}-\mathrm{H}$ distances of $0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=$

Figure 1
Part of the polymeric structure of (I), with the atom-numbering scheme for the asymmetric unit, and displacement ellipsoids shown at the 50% probability level.

Figure 2
The polymeric double chain of (I). H atoms have been omitted for clarity.
$1.2 U_{\text {eq }}($ parent atom $)$, and $\mathrm{C} s p^{3}-\mathrm{H}$ distances of $0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X.-M., Tong, Y.-X. \& Mak, T. C. W. (1994). Inorg. Chem. 33, 4586-4588.

metal-organic papers

Ganesh, V., Radha, A., Seshasayee, M., Subrahmaniyan, T. \& Aravamudan, G. (1990). Acta Cryst. C46, 2302-2305.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Toby, B. H., Hughey, J. L. IV, Fawcett, T. G., Potenza, Z. A. \& Schugar, H. J. (1981). Acta Cryst. B37, 1737-1739.

