Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena-Poly[[[aquazinc(II)]- μ -2,2'-dithio-dibenzoato] bis(N,N-dimethylformamide)]

Shun Wang, Hu Mao-Lin* and Fan Chen

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hml64@sohu.com

Key indicators

Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.005~\mathrm{\mathring{A}}$ R factor = 0.054 wR factor = 0.125 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $\{[Zn(C_{14}H_8O_4S_2)(H_2O)]\cdot 2C_3H_7NO\}_n$, the 2,2'-dithiodibenzenecarboxylate anion, which acts as a bridge, is tetradentate to water-coordinated zinc(II) ions, forming a polymeric double-chain ribbon. The geometry around the zinc(II) ion is that of a square pyramid. The coordinated water molecules and uncoordinated N,N-dimethylformamide molecules are linked by hydrogen bonds.

Received 5 March 2004 Accepted 16 March 2004 Online 20 March 2004

Comment

The 2,2'-dithiodibenzenecarboxylate (dtbc) anion binds to metal atoms in a variety of bonding modes, and two of its complexes have been structurally characterized (Ganesh *et al.*, 1990; Toby *et al.*, 1981). These studies have been extended to the present polymeric zinc complex, (I), in which each dtbc anion functions as a bridge linking four zinc ions.

$$H_3C$$
 H_3C
 H_3C

In (I), each zinc ion is coordinated by four O atoms from four carboxylate groups of four dtbc anions, with a typical Zn-O(carboxylate) distance range [2.041 (3)–2.056 (3) Å; Chen et al., 1994] and one water molecule, with a shorter Zn-O distance [1.964 (3) Å], resulting in a slightly distorted square-pyramidal coordination polyhedron (Table 1 and Fig. 1). The square plane containing atoms O3, O2ⁱ, O4ⁱⁱ and O1ⁱⁱⁱ [symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z; (iii) x-1, y, z; mean deviation 0.0028 Å] is slightly distorted. Four carboxylate groups bridge two zinc ions, forming centrosymmetric binuclear units with Zn···Zn separations of 2.9978 (8) Å, and a dihedral angle of 76.5 (1)° between the planes through the two aromatic rings. The dtbc anions link the binuclear units, generating a polymeric doublechain ribbon (Fig. 2). The N,N-dimethylformamide molecules are involved in hydrogen-bonding interactions with the coordinated water molecule (Table 2).

Experimental

A solution (10 ml) of ethanol containing 2,2'-dithiodibenzoic acid (0.33 mmol, 0.10 g) was added slowly to a dimethylformamide solu-

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

tion (10 ml) of zinc dimethyldithiocarbamate (0.5 mmol, 0.04 g). The mixture was stirred for a few minutes and left to stand at room temperature for a week, affording colorless block-shaped crystals.

Crystal data

[Zn(C ₁₄ H ₈ O ₄ S ₂)(H ₂ O)]·2C ₃ H ₇ NO $M_r = 533.90$ Monoclinic, $P2_1/c$ a = 11.0956 (4) Å b = 17.2715 (7) Å c = 12.2400 (5) Å $\beta = 95.695$ (2)° V = 2334.07 (16) Å ³	D_x = 1.519 Mg m ⁻³ Mo $K\alpha$ radiation Cell parameters from 2880 reflections θ = 2.4-26.6° μ = 1.27 mm ⁻¹ T = 298 (2) K
$\beta = 95.695 (2)^{\circ}$	T = 298 (2) K
$V = 2334.07 (16) \text{ Å}^{3}$	Block, colorless
Z = 4	$0.46 \times 0.18 \times 0.10 \text{ mm}$

Data collection

Bruker APEX area-detector	4193 independent reflections
diffractometer	3417 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{ m max} = 25.2^{\circ}$
(SADABS; Bruker, 2002)	$h = -13 \rightarrow 12$
$T_{\min} = 0.592, T_{\max} = 0.883$	$k = -20 \rightarrow 20$
12 296 measured reflections	$l = -13 \rightarrow 14$

Refinement

rejinemeni	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0625P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 1.0746P
$wR(F^2) = 0.125$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.001$
4193 reflections	$\Delta \rho_{\text{max}} = 0.70 \text{ e Å}^{-3}$
299 parameters	$\Delta \rho_{\min} = -0.37 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Selected geometric parameters (Å, °).

1.960(3)	Zn1-O4 ⁱⁱ	2.044 (3)
2.041 (3)	$Zn1-O1^{iii}$	2.056 (3)
2.042 (2)	$Zn1\cdots Zn1^{ii}$	2.9979 (8)
101 68 (12)	02 ⁱ 7n1 04 ⁱⁱ	87.27 (12)
\ /		98.11 (12)
\ /		(/
89.36 (12)		87.44 (12)
100.13 (13)	$O2^{i}$ - $Zn1$ - $O1^{iii}$	158.51 (11)
158.12 (11)	$O4^{ii}$ $-Zn1$ $-O1^{iii}$	87.83 (12)
-96.55 (18)		
	2.041 (3) 2.042 (2) 101.68 (12) 103.34 (12) 89.36 (12) 100.13 (13) 158.12 (11)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

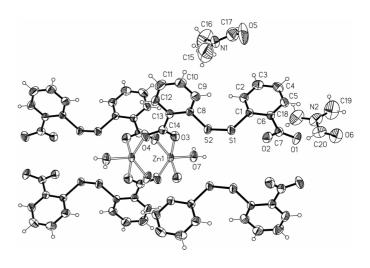

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) -x, 2 - y, -z; (iii) x - 1, y, z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O7−H7 <i>A</i> ···O5 ^{iv}	0.840 (19)	1.79 (2)	2.613 (5)	166 (5)
$O7-H7B\cdots O6^{iii}$	0.841 (19)	1.78(2)	2.619 (4)	172 (5)
$C2-H2\cdots S2$	0.93	2.74	3.220 (4)	113
C5-H5···O1	0.93	2.51	2.796 (5)	98
C9−H9···S1	0.93	2.75	3.216 (4)	112
C12-H12···O4	0.93	2.50	2.788 (5)	98
C15−H15A···O5	0.96	2.48	2.820 (11)	101
C19−H19A···O6	0.96	2.35	2.761 (8)	105

Symmetry codes: (iii) x - 1, y, z; (iv) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Water H atoms were refined [O-H = 0.840 (19) and 0.841 (19) Å]. All other H atoms were positioned geometrically and allowed to ride on their parent atoms at Csp^2-H distances of 0.93 Å, with $U_{iso}(H) =$

Figure 1Part of the polymeric structure of (I), with the atom-numbering scheme for the asymmetric unit, and displacement ellipsoids shown at the 50% probability level.

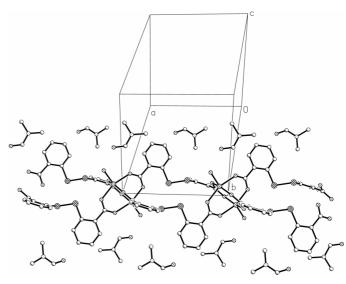


Figure 2
The polymeric double chain of (I). H atoms have been omitted for clarity.

 $1.2U_{\rm eq}$ (parent atom), and Csp^3 – H distances of 0.96 Å, with $U_{\rm iso}(H)$ = $1.5U_{\rm eq}$ (parent atom).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, X.-M., Tong, Y.-X. & Mak, T. C. W. (1994). Inorg. Chem. 33, 4586-4588.

metal-organic papers

- Ganesh, V., Radha, A., Seshasayee, M., Subrahmaniyan, T. & Aravamudan, G. (1990). *Acta Cryst.* C**46**, 2302–2305.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Toby, B. H., Hughey, J. L. IV, Fawcett, T. G., Potenza, Z. A. & Schugar, H. J. (1981). *Acta Cryst.* B**37**, 1737–1739.